LECTURE 8

YIHANG ZHU

1. A Brief introduction to Algebraic Geometry: Affine algebraic
 SETS

What is Algebraic Geometry? Roughly speaking, it is the study of zero loci of polynomials. To formulate the problem, let R be a commutative ring and $\left\{f_{i}\right\}$ a collection of polynomials in $R\left[X_{1}, \cdots, X_{n}\right]$. We would like to define and study the common zero locus of the f_{i} 's. However, the naive definition below is simply not good enough.

$$
\left\{\left(x_{1}, \cdots, x_{n}\right) \in R^{n} \mid f_{i}\left(x_{1}, \cdots, x_{n}\right)=0, \forall i\right\}
$$

For example, if we take the single polynomial $f(X)=X^{2}+1$, then the above set is empty if we take $R=\mathbb{Z}, \mathbb{Q}, \mathbb{R}$. But that does not mean $f(X)$ is not interesting to study in this case. One strategy of fixing the situation is just to look at the ring $A=R\left[X_{1}, \cdots, X_{n}\right] /\left(f_{i}\right)$, where $\left(f_{i}\right)$ means the ideal of $R[X]$ generated by the $f_{i}^{\prime} s$. This R-algebra A always makes sense, no matter whether the f_{i} 's have common solutions in R or not. We may just view A as the fundamental object of study, which sort of captures the geometric properties of the "common zero locus of the f_{i} 's'. This strategy works for general rings R, and is of the flavor of scheme theory. However for our purposes we need only treat the case where R is a perfect field. In this case there is a much more straightforward and also classical approach, which we describe below. Simply put, we look at the set of solutions in the algebraic closure \bar{R} of R, while remembering the Galois action everywhere.

From now on we fix a perfect field k, with algebraic closure \bar{k} and absolute Galois $\operatorname{group} G_{k}=\operatorname{Gal}(\bar{k} / k)$.

Definition 1.1. The affine n-space over k is $\mathbb{A}_{k}^{n}:=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \bar{k}^{n}\right\}$. The Galois group G_{k} acts on \mathbb{A}_{k}^{n} coordinate-wise. Let $k \subset l \subset \bar{k}$, define $\mathbb{A}_{k}^{n}(l)=$ $\left\{x \in \mathbb{A}_{k}^{n} \mid x_{i} \in l\right\}$. It is the subset of \mathbb{A}_{k}^{n} fixed by G_{k}.

Remark 1.2. We write \mathbb{A}_{k}^{n} instead of \bar{k}^{n} for two reasons. Firstly we want to emphasize that we remember the action of G_{k}, and the field \bar{k} contains a preferred subfield k. Secondly we want to emphasize that we do not view \mathbb{A}_{k}^{n} as a vector space, but rather an affine space on the vector space \bar{k}^{n}. (Namely it is a "vector space without origin.")

From now on we will use the multi-variable notation, when n is understood from the context.

Let I be a subset of $\bar{k}[X]=\bar{K}\left[X_{1}, \cdots, X_{n}\right]$. Define the locus of I to be

$$
V(I):=\left\{x \in \mathbb{A}_{k}^{n} \mid f(x)=0, \forall f \in I\right\}
$$

Note that we are looking at solutions inside \bar{k}. Observe: if we replace I by the ideal generated by I inside $\bar{k}[X]$, the set $V(I)$ remains to be the same. Conversely, if $I \subset \bar{k}[X]$ is an ideal, then $V(I)=V\left(I^{\prime}\right)$, if I^{\prime} is a set of generators of the ideal I.

Remark 1.3. By Hilbert' basis theorem, any ideal $I \subset \bar{k}[X]$ is finitely generated.
Definition 1.4. A subset of \mathbb{A}_{k}^{n} of the form $V(I)$ for some subset $I \subset \bar{k}[X]$ is called an affine algebraic set. It is also called a Zariski closed subset of \mathbb{A}_{k}^{n}.

We also have a construction that produces an ideal of $\bar{k}[X]$ out of an arbitrary subset $V \subset \mathbb{A}_{k}^{n}$. Define $I(V):=\{f \in \bar{k}[X] \mid f(x)=0, \forall x \in V\}$. One easily checks that this is an ideal. Observe: if an ideal I of $\bar{k}[X]$ arises in this way, then I is radical, i.e.

$$
I=\sqrt{I}:=\left\{f \in \bar{k}[X] \mid f^{n} \in I \text { for some } n\right\} .
$$

Theorem 1.5 (Hilbert's Nullstellensatz). Let I be an ideal of $\bar{k}[X]$. Then $I(V(I))=$ \sqrt{I}.

Corollary 1.6. Any maximal ideal of $\bar{k}[X]$ is of the form $\left(X_{1}-a_{1}, \cdots, X_{n}-a_{n}\right)$, for some $\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{A}_{k}^{n}$.
Proof. First note that an ideal of the form $\left(X_{1}-a_{1}, \cdots, X_{n}-a_{n}\right)$ is indeed maximal. Conversely, let $I \subset \bar{k}[X]$ be a maximal ideal. Then $I=\sqrt{I}$. By the above theorem $I=I(V)$ for some subset $V \subset \mathbb{A}_{k}^{n}$. If $V=\emptyset$ then $I(V)=(1)$, contradiction. Let $a=\left(a_{1}, \cdots, a_{n}\right) \in V$. Then $I=I(V) \subset I(\{a\})$. We also have $\left(X_{1}-a_{1}, \cdots, X_{n}-\right.$ $\left.a_{n}\right) \subset I(\{a\})$. Since both I and $\left(X_{1}-a_{1}, \cdots, X_{n}-a_{n}\right)$ are maximal ideals and $I(a) \neq(1)$, we conclude that $I=I(\{a\})=\left(X_{1}-a_{1}, \cdots, X_{n}-a_{n}\right)$.

Corollary 1.7. We have a bijection

$$
\begin{aligned}
&\{\text { radical ideals } I \subset \bar{k}[X]\} \longleftrightarrow \text { affine algebraic sets in } \mathbb{A}_{k}^{n} \\
& I \mapsto V(I) \\
& I(V) \longleftrightarrow V .
\end{aligned}
$$

This bijection is inclusion reversing. In particular, the maximal ideals of $\bar{k}[X]$ corresponds to points in \mathbb{A}_{k}^{n}, as seen in the previous corollary, the ideal (0) corresponds to \mathbb{A}_{k}^{n}, and the ideal (1) corresponds to \emptyset.
Definition 1.8. An affine algebraic variety in \mathbb{A}_{k}^{n} is an affine algebraic set V such that $I(V)$ is a prime ideal.

Corollary 1.9. We have a bijection
$\{$ prime ideals $I \subset \bar{k}[X]\} \longleftrightarrow$ affine algebraic varieties in \mathbb{A}_{k}^{n}
Example 1.10. Let $I=\left(X^{2} Y\right) \subset \bar{k}[X, Y]$. Consider $V=V(I) \subset \mathbb{A}_{k}^{2}$. Then $V=$ $\{(x, y) \mid x=0$ or $y=0\}$. $I(V)=(x y)=\sqrt{I}$. We see $I(V)$ is not prime, so V is not a variety. However, V is equal to the union $\{(x, 0)\} \cup\{(0, y)\}$, both of which are affine algebraic varieties, with ideals (x) and (y) respectively. Algebraically speaking, (x) and (y) are the two ideals that are minimal among the prime ideals containing $I(V)$.

Fact 1.11. In general, any affine algebraic set V can be uniquely written as a union $V=V_{1} \cup \cdots \cup U_{k}$, with each U_{i} an affine algebraic variety, and $V_{i} \not \subset V_{i}, i \neq j$. The ideals $I\left(V_{i}\right)$ are the minimal ideals among the prime ideals containing $I(V)$. The V_{i} 's are called the irreducible components of V.
Definition 1.12. Let $V \subset \mathbb{A}_{k}^{n}$ be an affine algebraic set. Let $I(V / k):=I(V) \cap k[X]$. This is an ideal of $k[X]$. It is a prime ideal if V is a variety. We say V is defined over k, if it is of the form $V(J)$ where $J \subset k[X]$, or equivalently, if $I(V / k) \bar{k}[X]=I(V)$.

Exercise 1.13. Prove the equivalence asserted in the definition.
Example 1.14. $k=\mathbb{R}, \bar{k}=\mathbb{C} . V=V\left(x^{2}+1\right)=\{ \pm i\} \subset \mathbb{A}_{k}^{1}$ is an affine algebraic set, not a variety, defined over $\mathbb{R} . V^{\prime}=V(x-i)=\{i\} \subset \mathbb{A}_{k}^{1}$ is an affine algebraic variety, not defined over \mathbb{R}. In fact $I\left(V^{\prime} / k\right)=\left(x^{2}+1\right)$, and $I\left(V^{\prime} / k\right) \mathbb{C}[X] \subsetneq I\left(V^{\prime}\right)=$ $(X-i) \mathbb{C}[X]$.
Proposition 1.15. Let $V \subset \mathbb{A}_{k}^{n}$ be an affine algebraic set. It is defined over k if and only if $\forall \sigma \in G_{k}, \sigma(V)=V$.
Proof. Suppose V is defined over k, then $V=V(J)$ for a subset $J \subset k[X]$. Note that for $f \in k[X]$ and $x \in \mathbb{A}_{k}^{n}, f(x)=0 \Leftrightarrow f(\sigma(x))=0, \forall \sigma \in G_{k}$, since the coefficients of f are fixed by σ. Thus we see that $\sigma(V)=V$.

Conversely, suppose $\sigma(V)=V, \forall \sigma \in G_{k}$. Then $\sigma(I(V))=I(V)$. Suppose there exists $f \in I(V)-I(V / k) \bar{k}[X]$. Assume the degree of f is minimal among such f 's. Let $l \subset \bar{k}$ be a finite extension of k containing all the coefficients of f. By scaling by \bar{k}^{\times}, we may assume the leading coefficient of f is $a \in l$ with $\operatorname{Tr}_{l / k} a \neq 0$. Look at $g=\operatorname{Tr}_{l / k} f=\sum_{\sigma \in \operatorname{Gal}(l / k)} \sigma(f)$. Then $g \in I(V / k)$, and g has the same degree as f. But then $f-\lambda g$ has strictly smaller degree than f, for some $\lambda \in \bar{k}$, and $f-\lambda g \in I(V)-I(V / k) \bar{k}[X]$, contradiction.
Definition 1.16. Let $V \subset \mathbb{A}_{k}^{n}$ be an affine algebraic variety defined over k. Define

$$
\begin{gathered}
k[V]=k[X] / I(V / k), \\
k(V)=\operatorname{Frac}(k[V]), \\
\bar{k}[V]=\bar{k}[X] / I(V), \\
\bar{k}(V)=\operatorname{Frac}(\bar{k}[V])
\end{gathered}
$$

We have $\bar{k}[V]=k[V] \otimes_{k} \bar{k}, \bar{k}(V)=k(V) \otimes_{k} \bar{k}$. For $k \subset l \subset \bar{k}$, we also define the set of l-rational points of V to be $V(l):=V \cap \mathbb{A}_{k}^{n}(l)$. Recall G_{k} acts on V, and $V(l)=V^{H}$, where $H=\operatorname{Gal}(\bar{k} / H) \subset G_{k}$.
Remark 1.17. Given an element f in $\bar{k}[V]$, resp. $k[V]$, we get a function from V to \bar{k}, resp. k, by evaluating f on the points in V. Similarly, given an element $f / g \in \bar{k}(V)$, resp. $k(V)$, we get a function with values in \bar{k}, resp. k, defined everywhere on V except where g vanishes. Note that by definition g does not vanish on the whole of V.
Remark 1.18. Even if V is not defined over k the definition $V(l)=V \cap \mathbb{A}_{k}^{n} \cap V$ still makes sense, but we will never talk about this set exclusively when V is defined over some subfield of l.
Example 1.19. Consider the algebraic set $V=V\left(X^{n}+Y^{n}-1\right) \subset \mathbb{A}_{\mathbb{Q}}^{n}$. It is defined over \mathbb{Q}, and it is a variety (see the exercise below). Fermat's Last Theorem states that for $n \geq 3$, we have

$$
V(\mathbb{Q})=\left\{\begin{array}{l}
\{(1,0),(0,1)\}, n \text { odd } \\
\{(\pm 1,0),(0, \pm 1)\}, n \text { even }
\end{array}\right.
$$

Exercise 1.20. Let $f \in \bar{K}[X]$. Show that $V=V(f)$ is a variety if and only if f is irreducible. Show that $f(X, Y)=X^{n}+Y^{n}-1$ is irreducible.
Corollary 1.21. Let $V \subset \mathbb{A}_{k}^{n}$ be an algebraic variety. Then as a set V is in bijection with the maximal ideals of $\bar{k}[V]$. Concretely, a point $p \in V$ corresponds to the maximal ideal $\mathfrak{m}_{p}:=\{f \in \bar{k}[V] \mid f(p)=0\}$.

