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1. A brief introduction to Algebraic Geometry: Affine algebraic

sets

What is Algebraic Geometry? Roughly speaking, it is the study of zero loci of
polynomials. To formulate the problem, let R be a commutative ring and {fi} a
collection of polynomials in R[X1, · · · , Xn]. We would like to de�ne and study the
common zero locus of the fi's. However, the naive de�nition below is simply not
good enough.

{(x1, · · · , xn) ∈ Rn|fi(x1, · · · , xn) = 0,∀i}
For example, if we take the single polynomial f(X) = X2 + 1, then the above set
is empty if we take R = Z,Q,R. But that does not mean f(X) is not interesting
to study in this case. One strategy of �xing the situation is just to look at the ring
A = R[X1, · · · , Xn]/(fi), where (fi) means the ideal of R[X] generated by the f ′is.
This R-algebra A always makes sense, no matter whether the fi's have common
solutions in R or not. We may just view A as the fundamental object of study,
which sort of captures the geometric properties of the "common zero locus of the
fi's". This strategy works for general rings R, and is of the �avor of scheme theory.
However for our purposes we need only treat the case where R is a perfect �eld. In
this case there is a much more straightforward and also classical approach, which
we describe below. Simply put, we look at the set of solutions in the algebraic
closure R̄ of R, while remembering the Galois action everywhere.

From now on we �x a perfect �eld k, with algebraic closure k̄ and absolute Galois
group Gk = Gal(k̄/k).

De�nition 1.1. The a�ne n-space over k is Ank :=
{

(x1, · · · , xn) ∈ k̄n
}
. The

Galois group Gk acts on Ank coordinate-wise. Let k ⊂ l ⊂ k̄, de�ne Ank (l) =
{x ∈ Ank |xi ∈ l} . It is the subset of Ank �xed by Gk.

Remark 1.2. We write Ank instead of k̄n for two reasons. Firstly we want to em-
phasize that we remember the action of Gk, and the �eld k̄ contains a preferred
sub�eld k. Secondly we want to emphasize that we do not view Ank as a vector
space, but rather an a�ne space on the vector space k̄n. (Namely it is a "vector
space without origin.")

From now on we will use the multi-variable notation, when n is understood from
the context.

Let I be a subset of k̄[X] = K̄[X1, · · · , Xn]. De�ne the locus of I to be

V (I) := {x ∈ Ank |f(x) = 0,∀f ∈ I} .
Note that we are looking at solutions inside k̄. Observe: if we replace I by the ideal
generated by I inside k̄[X], the set V (I) remains to be the same. Conversely, if
I ⊂ k̄[X] is an ideal, then V (I) = V (I ′), if I ′ is a set of generators of the ideal I.
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Remark 1.3. By Hilbert' basis theorem, any ideal I ⊂ k̄[X] is �nitely generated.

De�nition 1.4. A subset of Ank of the form V (I) for some subset I ⊂ k̄[X] is called
an a�ne algebraic set. It is also called a Zariski closed subset of Ank .

We also have a construction that produces an ideal of k̄[X] out of an arbitrary
subset V ⊂ Ank . De�ne I(V ) :=

{
f ∈ k̄[X]|f(x) = 0,∀x ∈ V

}
. One easily checks

that this is an ideal. Observe: if an ideal I of k̄[X] arises in this way, then I is
radical, i.e.

I =
√
I :=

{
f ∈ k̄[X]|fn ∈ I for some n

}
.

Theorem 1.5 (Hilbert's Nullstellensatz). Let I be an ideal of k̄[X]. Then I(V (I)) =√
I.

Corollary 1.6. Any maximal ideal of k̄[X] is of the form (X1− a1, · · · , Xn− an),
for some (a1, · · · , an) ∈ Ank .

Proof. First note that an ideal of the form (X1−a1, · · · , Xn−an) is indeed maximal.

Conversely, let I ⊂ k̄[X] be a maximal ideal. Then I =
√
I. By the above theorem

I = I(V ) for some subset V ⊂ Ank . If V = ∅ then I(V ) = (1), contradiction. Let
a = (a1, · · · , an) ∈ V . Then I = I(V ) ⊂ I({a}). We also have (X1 − a1, · · · , Xn −
an) ⊂ I({a}). Since both I and (X1 − a1, · · · , Xn − an) are maximal ideals and
I(a) 6= (1), we conclude that I = I({a}) = (X1 − a1, · · · , Xn − an). �

Corollary 1.7. We have a bijection{
radical ideals I ⊂ k̄[X]

}
←→ a�ne algebraic sets in Ank

I 7→ V (I)

I(V )← [ V.
This bijection is inclusion reversing. In particular, the maximal ideals of k̄[X] cor-
responds to points in Ank , as seen in the previous corollary, the ideal (0) corresponds
to Ank , and the ideal (1) corresponds to ∅.

De�nition 1.8. An a�ne algebraic variety in Ank is an a�ne algebraic set V such
that I(V ) is a prime ideal.

Corollary 1.9. We have a bijection{
prime ideals I ⊂ k̄[X]

}
←→ a�ne algebraic varieties in Ank

Example 1.10. Let I = (X2Y ) ⊂ k̄[X,Y ]. Consider V = V (I) ⊂ A2
k. Then V =

{(x, y)|x = 0 or y = 0}. I(V ) = (xy) =
√
I. We see I(V ) is not prime, so V is

not a variety. However, V is equal to the union {(x, 0)} ∪ {(0, y)}, both of which
are a�ne algebraic varieties, with ideals (x) and (y) respectively. Algebraically
speaking, (x) and (y) are the two ideals that are minimal among the prime ideals
containing I(V ).

Fact 1.11. In general, any a�ne algebraic set V can be uniquely written as a union

V = V1 ∪ · · · ∪Uk, with each Ui an a�ne algebraic variety, and Vi 6⊂ Vi, i 6= j. The
ideals I(Vi) are the minimal ideals among the prime ideals containing I(V ). The

Vi's are called the irreducible components of V .

De�nition 1.12. Let V ⊂ Ank be an a�ne algebraic set. Let I(V/k) := I(V )∩k[X].
This is an ideal of k[X]. It is a prime ideal if V is a variety. We say V is de�ned over
k, if it is of the form V (J) where J ⊂ k[X], or equivalently, if I(V/k)k̄[X] = I(V ).
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Exercise 1.13. Prove the equivalence asserted in the de�nition.

Example 1.14. k = R, k̄ = C. V = V (x2 + 1) = {±i} ⊂ A1
k is an a�ne algebraic

set, not a variety, de�ned over R. V ′ = V (x− i) = {i} ⊂ A1
k is an a�ne algebraic

variety, not de�ned over R. In fact I(V ′/k) = (x2+1), and I(V ′/k)C[X] ( I(V ′) =
(X − i)C[X].

Proposition 1.15. Let V ⊂ Ank be an a�ne algebraic set. It is de�ned over k if

and only if ∀σ ∈ Gk, σ(V ) = V .

Proof. Suppose V is de�ned over k, then V = V (J) for a subset J ⊂ k[X]. Note
that for f ∈ k[X] and x ∈ Ank , f(x) = 0 ⇔ f(σ(x)) = 0,∀σ ∈ Gk, since the
coe�cients of f are �xed by σ. Thus we see that σ(V ) = V .

Conversely, suppose σ(V ) = V,∀σ ∈ Gk. Then σ(I(V )) = I(V ). Suppose there
exists f ∈ I(V )− I(V/k)k̄[X]. Assume the degree of f is minimal among such f 's.
Let l ⊂ k̄ be a �nite extension of k containing all the coe�cients of f . By scaling
by k̄×, we may assume the leading coe�cient of f is a ∈ l with Trl/k a 6= 0. Look
at g = Trl/k f =

∑
σ∈Gal(l/k) σ(f). Then g ∈ I(V/k), and g has the same degree

as f . But then f − λg has strictly smaller degree than f , for some λ ∈ k̄, and
f − λg ∈ I(V )− I(V/k)k̄[X], contradiction. �

De�nition 1.16. Let V ⊂ Ank be an a�ne algebraic variety de�ned over k. De�ne

k[V ] = k[X]/I(V/k),

k(V ) = Frac(k[V ]),

k̄[V ] = k̄[X]/I(V ),

k̄(V ) = Frac(k̄[V ]).

We have k̄[V ] = k[V ] ⊗k k̄, k̄(V ) = k(V ) ⊗k k̄. For k ⊂ l ⊂ k̄, we also de�ne the
set of l-rational points of V to be V (l) := V ∩ Ank (l). Recall Gk acts on V , and
V (l) = V H , where H = Gal(k̄/H) ⊂ Gk.
Remark 1.17. Given an element f in k̄[V ], resp. k[V ], we get a function from V to k̄,
resp. k, by evaluating f on the points in V . Similarly, given an element f/g ∈ k̄(V ),
resp. k(V ), we get a function with values in k̄, resp. k, de�ned everywhere on V
except where g vanishes. Note that by de�nition g does not vanish on the whole of
V .

Remark 1.18. Even if V is not de�ned over k the de�nition V (l) = V ∩Ank ∩V still
makes sense, but we will never talk about this set exclusively when V is de�ned
over some sub�eld of l.

Example 1.19. Consider the algebraic set V = V (Xn +Y n− 1) ⊂ AnQ. It is de�ned
over Q, and it is a variety (see the exercise below). Fermat's Last Theorem states
that for n ≥ 3, we have

V (Q) =

{
{(1, 0), (0, 1)} , n odd

{(±1, 0), (0,±1)} , n even
.

Exercise 1.20. Let f ∈ K̄[X]. Show that V = V (f) is a variety if and only if f is
irreducible. Show that f(X,Y ) = Xn + Y n − 1 is irreducible.

Corollary 1.21. Let V ⊂ Ank be an algebraic variety. Then as a set V is in

bijection with the maximal ideals of k̄[V ]. Concretely, a point p ∈ V corresponds to

the maximal ideal mp :=
{
f ∈ k̄[V ]|f(p) = 0

}
.
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